

DESIGNING AND DELIVERING A SUSTAINABLE FUTURE

Appendix 11.1

Air Dispersion Modelling Supporting Information

Appendix 11.1 Air Dispersion Modelling Supporting Information

11.1.1 Description of the AERMOD Model

The AERMOD dispersion model has been developed in part by the U.S. Environmental Protection Agency (USEPA) (EPA, 2020; USEPA, 1995; USEPA, 2005; USEPA, 2022). The model is a steady-state Gaussian model used to assess pollutant concentrations associated with industrial sources. The model is an enhancement on the Industrial Source Complex-Short Term 3 (ISCST3) model which has been widely used for emissions from industrial sources.

Improvements over the ISCST3 model include the treatment of the vertical distribution of concentration within the plume. ISCST3 assumes a Gaussian distribution in both the horizontal and vertical direction under all weather conditions. AERMOD with PRIME, however, treats the vertical distribution as non-Gaussian under convective (unstable) conditions while maintaining a Gaussian distribution in both the horizontal and vertical direction during stable conditions. This treatment reflects the fact that the plume is skewed upwards under convective conditions due to the greater intensity of turbulence above the plume than below. The result is a more accurate portrayal of actual conditions using the AERMOD model. AERMOD also enhances the turbulence of night-time urban boundary layers thus simulating the influence of the urban heat island.

In contrast to ISCST3, AERMOD is widely applicable in all types of terrain. Differentiation of the simple versus complex terrain is unnecessary with AERMOD. In complex terrain, AERMOD employs the dividing-streamline concept in a simplified simulation of the effects of plume-terrain interactions. In the dividing-streamline concept, flow below this height remains horizontal, and flow above this height tends to rise up and over terrain. Extensive validation studies have found that AERMOD (precursor to AERMOD with PRIME) performs better than ISCST3 for many applications and as well or better than CTDMPLUS for several complex terrain data sets (USEPA, 1999).

Due to the proximity to surrounding buildings, the PRIME (Plume Rise Model Enhancements) building downwash algorithm has been incorporated into the model to determine the influence (wake effects) of these buildings on dispersion in each direction considered. The PRIME algorithm takes into account the position of the stack relative to the building in calculating building downwash. In the absence of the building, the plume from the stack will rise due to momentum and/or buoyancy forces. Wind streamlines act on the plume leads to the bending over of the plume as it disperses. However, due to the presence of the building, wind streamlines are disrupted leading to a lowering of the plume centreline.

When there are multiple buildings, the building tier leading to the largest cavity height is used to determine building downwash. The cavity height calculation is an empirical formula based on building height, the length scale (which is a factor of building height & width) and the cavity length (which is based on building width, length and height). As the direction of the wind will lead to the identification of differing dominant tiers, calculations are carried out in intervals of 10 degrees.

In PRIME, the nature of the wind streamline disruption as it passes over the dominant building tier is a function of the exact dimensions of the building and the angle at which the wind approaches the building. Once the streamline encounters the zone of influence of the building, two forces act on the plume. Firstly, the disruption caused by the building leads to increased turbulence and enhances horizontal and vertical dispersion. Secondly, the streamline descends in the lee of the building due to the reduced pressure and drags the plume (or part of) nearer to the ground, leading to higher ground level concentrations. The model calculates the descent of the plume as a function of the building shape and, using a numerical plume rise model, calculates the change in the plume centreline location with distance downwind.

P23-268 www.fehilytimoney.ie — Page 1 of 4

CLIENT: PROJECT NAME:

SECTION:

SRCL Ltd

EIAR for a Healthcare Waste Management Facility Chapter 11 – Air Quality

The immediate zone in the lee of the building is termed the cavity or near wake and is characterised by high intensity turbulence and an area of uniform low pressure. Plume mass captured by the cavity region is reemitted to the far wake as a ground-level volume source. The volume source is located at the base of the lee wall of the building but is only evaluated near the end of the near wake and beyond. In this region, the disruption caused by the building downwash gradually fades with distance to ambient values downwind of the building.

AERMOD has made substantial improvements in the area of plume growth rates in comparison to ISCST3 (USEPA, 1995; 1999). ISCST3 approximates turbulence using six Pasquill-Gifford-Turner Stability Classes and bases the resulting dispersion curves upon surface release experiments. This treatment, however, cannot explicitly account for turbulence in the formulation. AERMOD is based on the more realistic modern planetary boundary layer (PBL) theory which allows turbulence to vary with height. This use of turbulence-based plume growth with height leads to a substantial advancement over the ISCST3 treatment.

Improvements have also been made in relation to mixing height (USEPA, 1995; 1999). The treatment of mixing height by ISCST3 is based on a single morning upper air sounding each day. AERMOD, however, calculates mixing height on an hourly basis based on the morning upper air sounding and the surface energy balance, accounting for the solar radiation, cloud cover, reflectivity of the ground and the latent heat due to evaporation from the ground cover. This more advanced formulation provides a more realistic sequence of the diurnal mixing height changes.

AERMOD also has the capability of modelling both unstable (convective) conditions and stable (inversion) conditions. The stability of the atmosphere is defined by the sign of the sensible heat flux. Where the sensible heat flux is positive, the atmosphere is unstable whereas when the sensible heat flux is negative the atmosphere is defined as stable. The sensible heat flux is dependent on the net radiation and the available surface moisture (Bowen Ratio). Under stable (inversion) conditions, AERMOD has specific algorithms to account for plume rise under stable conditions, mechanical mixing heights under stable conditions and vertical and lateral dispersion in the stable boundary layer.

AERMOD also contains improved algorithms for dealing with low wind speed (near calm) conditions. As a result, AERMOD can produce model estimates for conditions when the wind speed may be less than 1 m/s, but still greater than the instrument threshold.

11.1.2 Appendix II - Meteorological Data - AERMET

AERMOD incorporates a meteorological pre-processor AERMET (USEPA, 2018). AERMET allows AERMOD to account for changes in the plume behaviour with height. AERMET calculates hourly boundary layer parameters for use by AERMOD, including friction velocity, Monin-Obukhov length, convective velocity scale, convective (CBL) and stable boundary layer (SBL) height and surface heat flux. AERMOD uses this information to calculate concentrations in a manner that accounts for changes in dispersion rate with height, allows for a non-Gaussian plume in convective conditions, and accounts for a dispersion rate that is a continuous function of meteorology.

The AERMET meteorological preprocessor requires the input of surface characteristics, including surface roughness (z0), Bowen Ratio and albedo by sector and season, as well as hourly observations of wind speed, wind direction, cloud cover, and temperature. A morning sounding from a representative upper air station, latitude, longitude, time zone, and wind speed threshold are also required.

Two files are produced by AERMET for input to the AERMOD dispersion model. The surface file contains observed and calculated surface variables, one record per hour. The profile file contains the observations made at each level of a meteorological tower, if available, or the one-level observations taken from other representative data, one record level per hour.

P23-268 — www.fehilytimoney.ie — Page 2 of 4

SECTION:

From the surface characteristics (i.e. surface roughness, albedo and amount of moisture available (Bowen Ratio)) AERMET calculates several boundary layer parameters that are important in the evolution of the boundary layer, which, in turn, influences the dispersion of pollutants. These parameters include the surface friction velocity, which is a measure of the vertical transport of horizontal momentum; the sensible heat flux, which is the vertical transport of heat to/from the surface; the Monin-Obukhov length which is a stability parameter relating the surface friction velocity to the sensible heat flux; the daytime mixed layer height; the nocturnal surface layer height and the convective velocity scale which combines the daytime mixed layer height and the sensible heat flux. These parameters all depend on the underlying surface.

The values of albedo, Bowen Ratio and surface roughness depend on land-use type (e.g., urban, cultivated land etc) and vary with seasons and wind direction. The assessment of appropriate land-use types was carried out in line with USEPA recommendations (USEPA, 2005) and using the detailed methodology outlined by the Alaska Department of Environmental Conservation (ADEC, 2008). AERMET has also been updated to allow for an adjustment of the surface friction velocity (u*) for low wind speed stable conditions based on the work of Qian and Venkatram. Previously, the model had a tendency to over-predict concentrations produced by near-ground sources in stable conditions.

11.1.2.1 Surface roughness

Surface roughness length is the height above the ground at which the wind speed goes to zero. Surface roughness length is defined by the individual elements on the landscape such as trees and buildings. In order to determine surface roughness length, the USEPA recommends that a representative length be defined for each sector, based on an upwind area-weighted average of the land use within the sector, by using the eight land use categories outlined by the USEPA. The inverse-distance weighted surface roughness length derived from the land use classification within a radius of 1km from Cork Airport Meteorological Station is shown in Table 11.1-1.

Table 11.1-1 Surface Roughness based on an inverse distance weighted average of the land use within a 1km radius of Cork Airport Meteorological Station.

Sector	Area Weighted Land Use Classification	Spring	Summer	Autumn	Winter ^{Note 1}
350-50	60% Urban, 40% Grassland	0.213	0.305	0.093	0.093
50-350	100% Grassland	0.050	0.100	0.010	0.010

Note 1 Winter defined as periods when surfaces covered permanently by snow whereas autumn is defined as periods when freezing conditions are common, deciduous trees are leafless, and no snow is present. Thus, for the current location autumn more accurately defines "winter" conditions in Ireland.

11.1.2.2 Albedo

Noon-time albedo is the fraction of the incoming solar radiation that is reflected from the ground when the sun is directly overhead. Albedo is used in calculating the hourly net heat balance at the surface for calculating hourly values of Monin-Obuklov length. A 10km x 10km square area is drawn around the meteorological station to determine the albedo based on a simple average for the land use types within the area independent of both distance from the station and the near-field sector. The classification within 10km from Cork Airport Meteorological Station is shown in Table 11.1-2.

P23-268 — www.fehilytimoney.ie — Page 3 of 4

CLIENT: PROJECT NAME:

SECTION:

SRCL Ltd

EIAR for a Healthcare Waste Management Facility

Chapter 11 - Air Quality

Table 11.1-2 Albedo based on a simple average of the land use within a 10km × 10km grid centred on Cork Airport Meteorological Station use within a 1km radius of Cork Airport Meteorological Station.

Area Weighted Land Use Classification	Spring	Summer	Autumn	Winter Note 1
19% Urban, 81% Grassland	0.17	0.18	0.20	0.20

Note 1 For the current location autumn more accurately defines "winter" conditions in Ireland.

11.1.2.3 Bowen Ratio

The Bowen ratio is a measure of the amount of moisture at the surface of the earth. The presence of moisture affects the heat balance resulting from evaporative cooling which, in turn, affects the Monin-Obukhov length which is used in the formulation of the boundary layer. A 10km x 10km square area is drawn around the meteorological station to determine the Bowen Ratio based on geometric mean of the land use types within the area independent of both distance from the station and the near-field sector. The classification within 10km from Cork Airport Meteorological Station is shown in Table 11.1-3.

Table 11.1-3 Bowen Ratio based on a geometric mean of the land use within a 10km × 10km grid centred on Cork Airport Meteorological Station.

Area Weighted Land Use Classification	Spring	Summer	Autumn	Winter Note 1
19% Urban, 81% Grassland	0.47	0.95	1.14	1.14

Note 1 For the current location autumn more accurately defines "winter" conditions in Ireland.

P23-268 — www.fehilytimoney.ie — Page 4 of 4

DESIGNING AND DELIVERING A SUSTAINABLE FUTURE

www.fehilytimoney.ie

